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ABSTRACT 

Let Fg,n be the  m a p p i n g  class group of a compac t  R i e m a n n  surface of 

genus  g wi th  n points  preserved ( 2 -  2 g -  n ( 0, g ~_ 1 , n  ~ 0). T h e  

Torelli subgroup  of Fg,n has  a na tura l  weight f i l trat ion {Fg,n(m)}m_>l.  

Each graded quot ien t  grm Fg,n Q Q ( m  _~ 1) is a finite d imens iona l  vector  

space over Q on which the  group Sp(2g, Q) × Sn natura l ly  acts. 

In this  paper ,  we have de te rmined  the  Sp(2g, Q) × Sn module  s t ruc tu re  of 

grm I 'g,n ® Q  for 1 ~_ m ~ 3. This  includes a verification of an  expec ta t ion  

by S. Morita.  Also, for general  m,  we have identified a cer ta in  Sp(2g, Q)- 

irreducible c o m p o n e n t  of grm Fg,n Q Q by cons t ruc t ing  explicit ly e lements  

in these  modules .  

1. In t roduc t ion  

The purpose of this paper is to present some results on graded quotient modules 

of the weight filtrations in the mapping class groups of surfaces. Let Fg,n be the 

mapping class group of a compact Riemann surface R of genus g with n points 
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preserved (2 - 2g - n < 0, g > 1,n > 0). The Torelli subgroup Fg,,~(1) has a 

weight filtration 

to,n(1) ~ r9,n(2) ~ . . .  

induced from the weight filtration of ~rx(R - {n-points}). Each graded quo- 

tient gr~ Fg,n = + 1) ® Q (m > 1) has a natural structure 

of a finite dimensional vector space and the associated graded sum GrQ rg,~ = 

~ = 1  gr~ ro,n has a natural structure of a graded Lie algebra. Moreover, the 

group Sp(2g, Q) x S~ naturally operates on both of them (cf. Lemma (2.2.8)). 

Here Sp denotes the symplectic group, and S~ denotes the symmetric group of de- 

gree n. We denote by [.k]Sp(2o) the rational irreducible representation of Sp(29, Q) 

with highest weight corresponding to a partition A, and by [~] the representation 

of Sn induced from the trivial representation of S k x  Sn-k. (If n < k, we set 

[~] = 0.) We will understand that these notations [A]Sp(2o),[~] also denote the 

representation spaces of Sp(29, Q) x Sn corresponding to them in the obvious 

manner. Our first result is the following 

THEOREM A: Assume g >_ 3. Then the following isomorphisms of Sp( 2g , Q) x S~- 

modules hold: 

(1) gr~ Fg,~ = [131Sp(2o)+ [7] ® [lisp(2®), 

(2) gr~ Fg,n = [22]sp(2o) + [~] ® [121Sp(2o)+ [2] ® [0]sp(2g), 

(3) gr~ Fo,n = [3, 12]Sp(2g) + [~] O [2, 1]sp(2g) + A 2 [i] ® [1]sp(2g). 

For the module gr~ Fg,n for general m, we have the following 

THEOREM B: Assume g >_ 3. Then there exist explicit elements ~ E gr~Fg,~, 

/3, ~ E gr~ Fo,,~ such that 

(1) ad(~)m(~) gives a nontrivial element of gr~ +2m Fg,,~ which generates an 

Sp(2g)-irreducible component of type [1 + 2m, 12] (m >_ 0); 
(2) ad(5)m(/~) gives a nontrivial element of gr~+2"~rg,~ which generates an 

Sp(2g)-irreducible component of type [2 + 2m, 2] (m >_ 0). 

Moreover, these irreducible components appear with multiplicity one. 

We shall explain related works of Johnson and of Morita from the viewpoint 

of the above results. Let Fg,1 be the mapping class group of a Riemann surface 

of genus g with one fixed boundary component. Then F;, 1 is a central extension 

of rg,1 by Z. There is an induced filtration on F~, 1 such that grm F~, 1 ==- grm Fo,1 
* l~alg* except for m = 2. In general, we have an embedding of grm Fo, 1 into gr m -o,1 
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which is an explicit Sp(2g, Q)-module fitting into the exact sequence: 

0 -+ gr "~ -9,'P~lg* --+ Hom(gr~ 1I 9, l,grQ z+l ng,1) --+ gr~ +2 H9,, --~ 0. 

In this terminology, part of the results of Johnson [J] and Morita [Mol],[Mo2] 
__1 ~alg* can be summarized as follows. Firstly, Johnson showed that gr~ Fg,1 = g~ xg,1 

2 . . . .  2 r~lg, (Actually their results imply and then Morita proved that  grQ Fg, 1 = ~1 19,1 . 

more about lattices.) In a more recent paper [Mo2], Morita also proved that,  for 

_ ,~ , p~lg, by using his theory of trace odd m > 3, grQ Fg,1 is strictly smaller than gr TM -g,1 

maps. Our proof of Theorem A will be reduced to these results of Johnson and 

of Morita. Theorem A (3) verifies Morita's expectation which appeared in [Mo2] 

Remark 6.12 (i). 

Recently, T. Oda [O] has shown, using the notion of 'cycle twists' due to 

M. Matsumoto, that gr TM Fg,0 contains a submodule isomorphic to a graded quo- 

tient module of Artin's pure braid group with respect to the lower central series. 

It seems an interesting task to relate our Lie technique with their works to obtain 
m r~alg further detailed description of the image of gr~ Fg,0 in gr lg,0. 

The organization of the present paper is as follows. Section 2 is devoted to 

relatively general arguments on the weight filtration in the mapping class group. 

In 2.1, we define the weight filtration and review its basic properties. In 2.2, 

the 'coordinate modules' are introduced, into which the graded quotient mod- 

ules by the weight filtration are embedded. In 2.3, we explain how to calculate 

the Sp(2g) x Sn-representations in the algebraic graded quotients defined in the 

coordinate modules. In 2.4, we review Fox's free differential calculus, and then 

give a short introduction to Morita's theory of trace maps. 

Section 3 deals with construction of special elements 6, ~, ~ of Theorem B. We 

first define two preliminary elements by using certain explicit Dehn twists, and 

then calculate their suitable deformations to obtain 6, ~, ~ under the actions of 

the symplectic Lie algebra through coodinate modules. Next, we examine that  

iterated Lie brackets of Theorem B give nontrivial vectors of certain good weights 

which will turn out to be highest. 

Finally in Section 4, we synthesize the arguments in Sections 2 and 3 and 

conclude the proofs of Theorems A, B. 

ACKNOWLEDGEMENT: The authors express their sincere gratitude to Professor 

Shigeyuki Morita for kindly allowing them to quote his latest results on mapping 

class groups. One of the authors also thanks Professors K. Koike and I. Terada 
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for helpful suggestions, especially for showing a table involving characters of 

symplectic groups with some invariants. 

Complemen tary  note: In a recent conference "Topology of Moduli Spaces of 

Curves" at Kyoto in September 1993, we have learned that Prof. S. Morita has 

determined the Sp(2g, Q)-module structure of gr~ F9,1. 

2. W e i g h t  f i l t ra t ions  and  M o r i t a ' s  t r a c e  m a p s  

2.1. BASIC SETUP. 

(2.1.1). Let Fig,n be the fundamental group of an n-point punctured Riemann 

surface of genus g presented by 

x  l XlX +l  
Here [,] denotes the commutator bracket: [x,y] = x y x - ~ y  -1.  We assume g >_ 1, 

n > 0 and 2 - 2 9 - n < O, and introduce a central filtration (due to Oda-Kaneko 

[Zl) II~,,~ = n~,,~(1) D ng,n(2) D ' " ,  called we igh t  f i l t ra t ion,  by setting 

r ig ,n(1)  = fig,n, 

= [ u s , . ,  

IIg,.(m) = ([gl,g2]l gl e IIg,n(m'),g2 e IIg,.(m"), (m' + m" = m)) (m _> 3). 

It is known that r'lm>l IIg,n(m) = {1}. Notice that when n = 0, 1 this central 

filtration coincides with the usual lower central filtration. 

(2.1.2) Let grmIIg,,~ = IIa,n(m)/iig,~(,~ + 1) and GrIIg,~ = $ ~ = l g r ' ~ I I ~ , . .  

Then Gr Hg,n has a structure of a graded Lie algebra over Z induced from the 

commutator bracket on Ha,,. It follows from Labute [L] that Gr 1-Ig,~ is presented 

by 

generators: Xi = xi mod fig,n(2) (i = 1 , . . .  ,2g), 

Zj  = zj rood IIa,~(3) (j = 1 , . . . , n ) ;  

relation: E [ X , ,  Xg+i] + Zj = 0, 
i ~ l  j = l  
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and tha t  for each m, grm IIg,~ is a finitely generated free Z-module whose rank 

is given by 

(2.1.3) rank grmIIg'n =--ml d~[m # -d(rn) E d~d- (d-i] 
o<_~<_[~1 

(cf. [K]). 

(2.1.4) Define the group of "braid-like" automorphisms of IIg,n by 

Fg,[n] = {a e AutII~,~ I a(zj) ~ ~,~(j)(3 = 1 , . . . , n )  ~ a  = +1, 3~- = 7to e S~}, 

where ~ denotes conjugacy in IIg,n. We consider tha t  Fg,[,q acts on IIg,n on the 

left. Since each element of Fg,[,] stabilizes PIg,,~(2), Fg,[,q acts on II9,~/II9,.(2 ) "~ 

Z 29. From this we get a representation 

p: ]~g,[~] ~ GL(2g, Z) 

= 

N2g x pk~ modIIgn(2) .  It follows by a result of Nielsen tha t  the by ~(x~) = 11k=1 k 
image of this representation coincides with 

( 
GSp(2g, Z) = ~A e GL(2g, Z) tAJgA 

where x(A) = +1. 

(2 .1 .5)  

(0 
=  (d)Jg, J g =  19 0 ' 

Now we introduce groups Fg,n, Fg,n, F~,,~ defined by 

Fg,n = {a e Fg,[,ql 7to = id}, 

Fg,n = {a e Fg,nlx(P~) = 1, 7r¢ = id} / In t  II9,,, 

F~,~ = {a e Fg,~]X(Po) = 1,a(zn) = z,~, 7r¢ = id}. 

It is well-known tha t  Fg,,  (resp. F~,.) is the mapping class group of a genus 

g surface with n-points preserved (resp. with (n - 1)-points preseved and 1 

boundary  component fixed) (cf. Birman [Bi]). 

(2.1.6) We give Fg,[n I a filtration 
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by setting 

= 
Pg,n (7(Xi)X~I • ng'n(m q- 1)(i = 1, . . . ,  2g) / (m > 

C a(zj) ~ zj(j = 1 , . . . ,n)  j - 
1), 

where ~ denotes conjugacy by an element in IIg,n(m ). Then, on Fg,n and Fg,,~, 

natural filtrations are induced from that on Fg,,~' 

(2.1.7) For each m, grm Hg,,~ is acted on by, in general, GSp(2g, Z) × S,~ 

naturally in the following manner. Since the filtration {IIg,,~(m)} is preserved 

by the action of Fg,[,~], each gr m 119,n can be a Fg,[nl-module. But it follows from 

the triviality of the action of Fg,,~(1) on 119,n/Hg,n(2 ) that the above operation 

of Fg,[n] on grm Hg,n factors through Fg,[n]/Fg,,~(1) = Sp(2g, Z) × S, .  Observe 

that only when n = 1, gr "~ i]9,1 can be a natural GL(2g, Z)-module. 

(2.1.8) We can also consider gr m Fg,~ = Fg,~(m)/Fg,n(m + 1) (m _> 1) and 

GrFg,,~ = ~ = l g r m F 9 , , .  Since the weight filtration in Fg,,~(1)is central, 

GrFg,,~ has a structure of a graded Lie algebra. Each element a of Fg,~(m) 

induces a derivation D~ of Gr YIg,n by 

D~(x mod Hg,n(i + 1)) - - - -  O'(X)X -1 mod Hg,n(i + m + 1) (i > 1). 

Then the mapping 

D: GrFg,n ~ Der(GrHg,n) 

gives an injective Lie algebra homomorphism. Here Der( ) denotes the Lie alge- 

bra of graded derivations of the Lie algebra inside. (cf. Bourbaki [Bo] Chap. 2, 

Ex §4-3, see also Nakamura-Wsunogai [NT1] §5.) 

(2.1.9) Similarly, we introduce the notations grmFg,,~, GrFg,n , grmFg,~ and 

Gr Fg,n by which we mean obvious senses. Notice that Gr F~, n is a Lie subalgebra 

of GrFg,n but Gr Fg,n is its quotient by GrIIg,~ (cf. [NT1]). Observe also that by 

conjugation the graded quotients grm Fg,n, gr "~ F~,n and gr TM Fg,~ are naturally 

GSp(2g, Z) × Sn-modules. (Unlike grm 119,1, the modules gr m F9,1 etc. are not 

GL(2g, Z)-modules apriori.) As Z-modules, grm rg,n , grm Fg,n (hence gr "~ F~,n) 

are free of finite rank (Asada [A2]). We see that F;, n is a central extension of 

Fg,n by Z, and that grm Fg,n -- gr m Fg,n when m ~ 2. 
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2 . 2 .  COORDINATE MODULES AND FUNDAMENTAL COMPLEXES.  

(2.2.1) To describe the module gr TM Fg,~ (m > 1), let us recall basic facts about 

the coordinate module and its submodules (cf. [NT1]). The c o o r d i n a t e  m o d u l e  

Cm(2g, n) (m >_ 1) is defined by 

(g r  m + l  YIg,n) @2g ~ (g r  TM IIg,n) (~n (m • 2),  

Cm(2g 'n)= (grm+'I lg,~)e2ge ~(grmIIg,n/(hj})  ( m = 2 ) ,  
2=1 

and its Sp(2g, Z) × S,~-module strucutre is introduced by 

2g 

(2.2.2) (p,~). (s~)i × (Tj)j := (~p~(p ,~)(Sk))~  × ((p, ~)(T~-,(~)))j 
k=l  

where p = (Pij) E Sp(2g, Z), 7r E S~, and (Si)~ x (Tj)j = ($1 . . . .  ,S29, T t , . . .  ,T~) 
is an element of Cm(2g, n). 

(2.2.3) Let fm denote the following homomorphism 

fro: Cm(2g, n) ~ gr m+2 IIg,,~ 
g n 

(s~)~ × (~j)j ~-~ Z ( [ x~ ,  s~+d + IS. x~+d)+ ~ [ r j ,  Zj], 
i = l  j = l  

l 'alg 1 a~j~ (Note that we do not define -g,n and denote the kernel of ]m ® Q by gr m _ g y  

itself in this paper.) We define the mapping 

cm: Fg,~(m) -~ C~(2g, n) (m >_ 1) 

as follows. For a C Fg,~(m), put s~(a) = a(xi)x~ 1 (1 < i < 2g), and let tj(a) be 

an element of IIg,~(rn) such that a(zj) = t j(a)zj t j(a) -1 (1 ~ j _< n). Since the 

centralizer of zj in IIg,~ is (zj}, tj(a) rood I]g,n(m + 1) is uniquely determined if 

m ~ 2 and tj(a) rood IIg,~(3)(zj} is uniquely determined if m = 2. Then, letting 

- represent suitable quotient images, we define 

cm(~) = (s,(~))l<~<~ × (t3(~))~_<j<~. 

Since si(a~-) = a(si(T))si(a), tj(aT) = ~r(tj(T) )tj(a) (a, T E Fg,n(m) ) and since 

Fg,~(m) acts trivially on Gr IIg,n, the map Cm induces an injective homomorphism 

tin: gr TM Fg,~ -~ Cm(2g, n). 
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We note that, by definition, ~ (a )  is nothing but Do(xi), Da being the derivation 

associated with a (cf. (2.1.8)). 

The following lemma is basic and can be found in e.g. [K] (in the context of 

pro-/groups),  [Mo2] Corollary 3.2 (in the case of n = 1). 

LEMMA (2.2.4): The image of grm Fg,n v ia  [m is contained in Ker ira. 

PROPOSITION (2.2.5): The above homomorphisms gm and fm are equivariant 

with the actions of Sp(2g, Z) × Sn. Hence we have a complex of Sp(2g, Z) × Sn- 

modules: 

grm~g,~ r~ , Cm(2g, n ) ]~ , grm+21]9, ~ 

in which [m is injective and /m is surjective. 

Proof." The injectivity of ~,~ is obvious and the inclusion Im [m C Ker ]m follows 

from Lemma (2.2.4). The surjectivity of f,~ follows from the fact that the Lie 

algebra GrIIg,,~ is generated by Xi (1 < i < 2g), Zj (1 _< j _< n -  1). For the 

Sp(2g) × S~-equivariances of Zm and fro, see [NTX] §1, Theorem (1.14). | 

Now, we define 

C'n(2g, n) * = {(Si) x (Tj) e Cm(2g, n)[Tn = 0}, 

which is a submodule of Cm(2g, n). Then, 

COROLLARY (2.2.6): For m >_ 1, the sequence 

gr TMF* ~ ~ Cm(2g, n)* fL g,n ) g rm+2 IIg, n 

is a complex, where t~ (resp. f *  ) is the restriction Of[m (resp. ira). Moreover, 

~ is injective and ]* is surjective, and both of them are Sp(2g, Z)-equivariant. 

Since the Lie algebra GrII9,~ has trivial center (cf. [A2]), we can regard 

grm IIg,~ as a submodule of the coordinate module Cm(2g, n) given by 

{([h,~])~ × (h , . . . , h )  e Cm(2g, n)[ h e gr'~IIg,,}. 

The quotient cm(2g, n)/gr TM IIg,~ is called the r e d u c e d  c o o r d i n a t e  modu le ,  

and the maps ira, ]m also induce the complex of Sp(2g, Z) x Sn-modules: 

(2.2.7) grmFa,n .~ , Cm(2g, n)/grmHg,n fm , grm+2iig,,~, 
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in which ~,~ is injective and fm is surjective. We define -~ ~alg gr lg,~ to be the kernel 
rn alg* * of f m ®  Q. We also define gr Fg,,~ to be the kernel of f*~ Q Q in (2.2.6). It is 

not difficult to see that the following isomorphisms hold: 

r a l g ,  ~ ~ a l g  / r~a lg ,  t ~ -  ~ ~ 2 ~ a l g  gr m_g, .  = gr ~ tg ,Mm ¢ 2), gr 2 tg, ~ /iz,~] = gr tg,~. 

By construction, we easily see that the actions of Sp(2g, E) on the various CO- 
l~alg rn alg* [ ' a l g  ordinate modules are rational and that grm _g,~, gr Yg,n , grm _g,~ are rational 

representations of Sp(2g, Q) so that f m ®  Q, f,~ ® Q, f m ®  Q are Sp(2g, Q)- 

equivariant homomorphisms. On the other hand, it is a nontrivial problem 

whether the natural actions of Sp(2g, N) on grm f'g,,~, grm Fg,n, gr "~ Fg,~ are ra- 

tional ones or not. In this paper, we content ourselves with a weaker algebraicity 

result on those Q-tensored modules which can be stated as follows. 

ALGEBRAICITY LEMMA (2.2.8): The images of Zm ® Q, ~* @ Q, c,~ ® Q are 

stable under the natural actions of Sp(2g, Q) on the respective coordinate mod- 

ules containing them. Hence, in particular, we may define (algebraic) actions of 

Sp(2g, Q) on gr~ Fg.~, gr~ F;.~, gr~ ~ Fg., by restriction so that ~,~ ® Q, t* ® Q, 

tm® Q are Sp(2g, Q)-equivariant homomorphisms. 

Proof'. We have only to see a general fact, that if L is a 7Z-submodule of a 

rational finite dimensional Sp(29, Q)-module V which is stable under the action 

of Sp(2g, Z), then L ® Q c V is also stable under the action of Sp(2g, Q). In 

fact, suppose on the contrary that  Av ff L ® Q for some v E L ® Q and A E 

Sp(2g, Q). Then for a sufficiently large prime p we have A E Sp(2g, Zp). But by 

the approximation theorem, there is a sequence {Ai}i°°=l C Sp(2g, g) such that 

limi--.oo Ai = A in the congruence topology of Sp(2g, gp). Since L ® Qp is closed 

in V @ Qp, we get L @ Qp 9 limi~oo Aiv = Av ¢ L @ Qp which is a contradiction. 
| 

Remark (2.2.9): The above maps Zm, t,~ and ~,~ can be considered as general- 

izations of the Johnson homomorphisms 

r~+a: gr m F; ,  1 -'-+ Hom(gr 1 IIg,1, gr m+l IIg,1) 

studied by Johnson [J] and Morita [Mol]. II 



102 M. ASADA AND H. N A K A M U R A  Isr. J. Math .  

2.3. UNIVERSAL CHARACTERS OF WEIGHT GRADUATIONS. 

(2.3.1) Let us decompose the Sp(2g, C) x S~-modules gr~ H~,~ -- gr m IIg,,~ ® C 

and _..m r,~Ig F ~Ig ® C as ~,iC ~g,,~ = g rm -g,n 

r ~l~ = ~ w~ ® [~]sp(2g), gr~ -9,n 
X 

in which A run over all partitions, and V~, Wx are representation spaces of Sn 

whose dimensions give multiplicities of [A]Sp(29). (We regard each of these repre- 

sentations naturally as an Sp(2g) × S~-representation.) For each partition ~r, we 

obtain the virtual characters of Sp(2g, C) given by 

rn a[g [gr c Fg,,(~r)] := ~ Tr(~r0, WA) [A]Sp(2g), 
A 

where Tr(Tro, *) is the trace of the endomorphism on * induced by ~ro E S,  of 

cycle type 7r. 

We wish to deal with these characters in a uniform way with respect to the 

genus g. In fact, as explained in the following, there exist universal characters 

[gr TM II(Tr)], [gr "~ P(Tr)] in the universal character ring for the classical Lie groups 

in the sense of Koike-Terada [KT] so that  their 'specializations to Sp(2g)' give 

the virtual characters [gr~ IIg,,(Tr)], {gr~ F~l g (Tr)]. 

(2.3.2) Let A,  be the ring of symmetric functions in n variables t l , . . . ,  t~ (n >_ 

1), and put A = l imA,  where the projective limit is taken with respect to the 

maps An --* A~-I which sends tn to 0 and keeps the t~ (1 < i < n - 1) identically. 

This ring is introduced in Macdonald's book [Ma] and, as in the paper by Koike- 

Terada [KT], it can be considered as the universal character ring for classical Lie 

groups. For each partition 7r and an integer m > 1, we can define an element 

[gr "~ II(Tr)] E A by the formula 

(2.3.3) [grmII(~r)]=--mld~l~# -d(m) ~ d i i d ( d - i )  --t)"ipm/ad-2i 
O<i<[d/21 
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where p~ (i = 1 , 2 , . . . )  is the power sum symmetric function of degree i, and 

F(7c re~d) is the sum of the parts of ~r dividing m/d.  We also define 

(2.3.4) 

[gr "~ F(Tr)] := pl[gr "~+a II(Tr)] + (F(zr) - 1)[gr "* II(Tr)] - [gr m+2 II(7r)] - F(rc)62,m, 

where ~ means Kronecker's delta. 

(2.3.5) Let R(Sp(2g)) be the rational character ring of Sp(2g, C). In [KT], Koike 

and Terada introduced a specialization homomorphism 

7rSp(2g): A ~ R(Sp(2g)), 

and described its precise behavior with the 'Young-diagramatic' method. 

LEMMA (2.3.6): Let 7r be a partition with size n = [~r]. Then, 

~rSp(~g)([gr m IIQr)]) = [gr~ IIg,,,(~r)], 

7rSp(2g )([gr "~ F(Tr)]) m alg = [gr c Fg,nQr)]. 

The first formula of this lemma can be obtained by modifying suitably the rank- 

formula (2.1.3) (cf. [KO] Lemma (6.3), [NT1] Remark (1.18)). The second one 

F alg A more leisured account follows as a consequence of our definition of grm -~,n- 

of them will be presented in the forthcoming monograph [NT2]. From Lemma 

(2.3.6), we see that types of irreducible decompositions of gr~ IIg,n , gr~ F~Z,~ 

become stable when the genus g increases sufficiently. 

COROLLARY (2.3.7): Let g >_ 3. An irreducible component with highest weight 

vectors of the Sp(2g, C)-module gr~ F alg appears with multiplicity one. It is - - g i n  

[m, 12]Sp(2g) when m is odd and [m, 2]Sp(2g ) when m is even. 

Proof'. Observing the Laurent polynomial obtained by specializing p~ to 
• i (t~ + t~-* + . . .  + t9 + t~ -¢) in the formula (2.3.4), we find that the coefficients 

of the monomials t~  +2, m 2 t I t 2, t'~t2t3 in it are respectively 0,0,1 when m is odd 

and 0,1,1 when m is even. These are multiplicities of the respective weights of 

the action of the standard torus of Sp(2g). The conclusion follows from this 

observation and the rule of specialization described in [KT] p.504. | 

2.4. FREE DIFFERENTIAL CALCULUS, MORITA'S TRACE MAPS. 

Let R be the noncommutative formal power series ring over Z in variables 

Ul, . . .  ,u2g. Then we can embed IIg,1 as a subgroup of the unit group R × of R 
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by sending xi to 1 + ui (i = 1 , . . . ,  2g) (Magnus embedding). Let c: R ~ Z be 

the augmentation map and I = ker(e) the augmentation ideal of R. For each 

r • R, there exist elements Or/Oxi • R (i = 1 , . . . ,  2g) uniquely determined by 

the formula 
Or 

r = e(r) + E ~-L-7~. (xi - 1). 
i 

(These Or/Oxi are called Fox's free derivatives of r.) 

By making use of free differential calculus, S.Morita [Mo2] introduced "trace" 

homomorphisms 

Trm: Cm(2g, 1)* --~ Sym m H (m _> 1), 

where Sym m H denotes the m-th symmetric tensor of H := Hg,1/IIg,l(2 ). The 

definition of Tr,~ is as follows. For each S = ($1, . . . ,$29,0)  E Cm(2g,1) *, 

choose lifts si of S~ in II~,l(m + 1) respectively. Then ~ i  Osl/Oxi gives an el- 

ement of Im/ I  m+l ~ H ®m which is determined independently of the choice 

of the si. The trace Trm(S) is defined to be the image of ~-'~i Osi/Oxi mod 

I m+l by the natural projection H ®m ~ Sym "~ H. In [Mo2], it is shown that 

Trm : C'~(2g, 1)* ~ Sym m H is a GL(2g, Z)-equivariant homomorphism satisfy- 

ing the following properties. 

palg* (2.4.1) If m is even, then Trm is 0-map on grm -g,1 • 

(2.4.2) If m is odd > 1, then Trm ®Q: ¢ m p~lg* _ ~r --g,1 ~ SY mm H ® Q is surjective. 

(2.4.3) For f e Cn(2g, 1)*,g • Cm(2g, 1) *, Trm+~([f,g]) = 0. 

The striking result is the following 

THEOREM (2.4.4) (Morita [Mo2] Theorem 6.11): Each grm Fg,1 is killed by the 

trace map Tr,~ (m > 3). 

By (2.4.2) and (2.4.4), we obtain nontrivial gaps between gr~ Fg,1 and grm r~lg* ~g,1  

for odd m > 3. 

3. Lie d e f o r m a t i o n s  of  D e h n  twis t s  

(3.1) The group gr~Fg,n has a natural structure of Sp(2g, C)-module by 

(2.2.8), hence that of sp(2g, C)-module, sp(2g, C) being the Lie algebra of the 
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Lie group Sp(2g, C). Let [~ be the Lie subalgebra consisting of all diagonal 

matrices in sp(2g, C). Let ei: b --* C (1 _< i _< g) be the linear map such that 

¢~(H) = hi (H E I~), 

hi being the (i,/)-component of H. 

In this section we assume g _> 3 and shall define elements ~.~ E gr~ +2m Fg,n 

and ~.~ E gr~ +2m F~,n (see Definition (3.10)) to show the following 

THEOREM (3.2): The elements (~m and ~m are non-zero elements of  weights 

~n~2c3, c~nc2 2 respectively. 

(3.3) We start with certain automorphisms of I/~,n corresponding to Dehn 

twists. Let a and T be the unique automorphism of Hg,n satisfying 

{ Xl[X2,X~+2], (i = 1), 
~(xd = (Ix2, x~+2]-lx~+~)x~([x~, x~+~]-'x~+,)-', (i = 2, g + 1, g + 2), 

x~, (i ¢ 1, 2, g + 1, g + 2); 

a(z j )  = zj, (1 < j _< n); 

f [x,,x~+,]x~[x~,~+,] -1, (i = 1,g + 1), 
T(Xi) 

xi, (i ~ 1,g + 1); 
r(zj)  = zj,  (1 _< j < n). 

\ j  
Figure A 
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The existence and uniqueness of such automorphisms are immediately verified 

purely algebraically. But we note here the geometric meanings of these automor- 

phisms. The automorphsim a corresponds to (a lifting of) the quotient of two 

Dehn twists associated with the simple closed curves cl and c2, and the automor- 

phism 7 corresponds to (a lifting of) the Dehn twist associated with the simple 

closed curve ca (Figure A). 

From the definition of a and r, it follows easily that cr E Pg,n(1) and r E 

Fg,~(2). Recall that an element p of Fg,n(m) (m > 1) determines naturally a 

derivation Dp of GrHg,,, of degree m (cf. (2.1.8)). For a and 7, we have 

Ix2,  (i = 1), 

D~(Xi) = [Xg+,, X2], (i = 2), 
[Xa+I,Xa+2], (i = g + 2), 

O, (i ¢ 1,2,g + 2); 

(3.4) Do(Zj)  = 0, (1 _< j _< n); 

[ [ X l , X g + l ] , X , ] ,  (i  : 1), 

Dr(Xi)= [[Xl,Xg+,],Xg+l], (i = g +  1), 

O, (i ¢ 1,g + 1); 

D , ( Z j )  = 0, (1 _< j < 

(3.5) Recall that the action of Fg,n on the group II9,n induces a homomorphism 

Sp(2g, Z) --~ Aut(Gr Ilg,n ). 

It is easy to see that this induces a Lie algebra homomorphism 

sp(2g,C) ~ Der(GrIIg,n ® C) 

L,-+ L*. 

Similarly, the conjugate action of Fg,~ on the Lie algebra Gr Fg,,~ induces a Lie 

algebra homomorphism 

sp(2g, C) -+ Der(Gr Fg,n ® C). 

Recall that the Sp(2g, Z)-module structure of grm Fg,n is described in terms of 

that of the coordinate module Cm(2g, n). By (2.2.2) and (2.2.5), the action of 

sp(2g, C) on the coordinate (Si)i is given by 

(3.6) n.(si)~ = (L*Si)i - (&)iL, 

where (Si)iL represents a product as matrices. 
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(3.7) Let Epq = ( e i j )  denote the element of sp(2g, Q) such that 

1, (p,q) = (i,j), 
eij = 0, otherwise, 

and put 

L1 = ~l ,g+l,  

L2 = E2,g+3 + Ea,g+2, 

L3 = Ex,9+2 + E2,~+1, 

L4 = E9+2,2. 

Let # ¢ gr 1 f'a,n (resp. ¢ E gr 2 Fg,,~) be the class of a (resp. r)  defined in (3.3). 

We define a ¢ gr~ ['~,n and/3, 7 e gr~ ['9,,~ by 

1 2-  a=-L2LIO, /3=-~L3r, 7 = -  L4L~¢. 

By using (3.4) and (3.6), we have the following 

LEMMA (3.8): 

(1) 

(2) 

(3) 

{ [x2,x3] 
D~(Xi) = -[X1,  Xa] 

[Xl, X2] 

0 

Do,(Zj) = 0 (1 <_ j <_ n). 

(i = g + 1), 

(i = g + 2),  

(i = g + 3),  

(i ¢ g+ l , g+  2, g+ 3); 

[[Xl, X21 , X21 (i = g + 1), 

D~(Xi) = -[[X1,X2],X1] (i = g + 2 ) ,  

0 ( i •g+l ,g+2);  
De(Zj) = 0 (1 5 j < n). 

[[Xl,X2],Xl]  

D.r(Xi ) -_ [IX1, Xg+2], X2] 
[Xl, [Xl, Xg+2]] 

0 

D-~(&) = 0 (1 _< j < n). 

"~- [[Xl, X21, Xg+2] 

(i = 2), 

( i = g + l ) ,  

(i = g + 2), 
(i # 2 , ~ +  1,g + 2); 
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COROLLARY (3.9): The elements a, t ,  "~ are eigenvectors orb of weights ele2e3, 

2 2 e~, respectively. ~1C2, 

Definition (3.10): For each non-negative integer m, let 

aT, := ad(~')m(a) e gr~ +2m Fg,,, 

,~r 2+2m t m  :=  e Q . ,n ,  

and define Om (resp. tim) to be the element of s~Q--l+2m lg '~ ,. (resp. gr~ +2m F~,n) 

determined by a m (resp. t i m ) .  | 

LEMMA (3.11): 

(1)o~ D ~ ( X 1 )  = Dc~m(X3) = O. 

(1)~3m Dzm(X1) = D~3,,,(X3) = 0. 

(2),~ D,~m(Xg+3) = ad(X,)2m+X(X2). 

(2)~3. Dz.(Xg+2) = (-2)  m ad(X1)2m+2(X2). 

Proof." By the definition of a ~  and tim, we have 

D ~  = D T D ~ _ , -  D ~ _ ~ D v ,  

D3~ = D T D 3 ~ _ ~ -  D~_~Dv .  

From this and Lemma (3.8), all formulas of Lemma (3.11) follow by induction 

on m. | 

We need the following two lemmas whose proof will be given later. 

LEMMA (3.12): The element ad(X1)m(x2)  of GrHg,n is non-zero for all m. 

LEMMA (3.13): Let Xp and Xq be given (1 <_ p < q < 2g). Let T be an element 

of g r  n~,~ satisfying [T, Xp] : [T, Xq] = O. Then, T = O. 

(3.14) Proof of Theorem (3.2): By Corollary (3.9) and the definitions of am and 
C2rn+lc C ~2m+2~2 tim, it follows that am and tm are vectors of b of weights a 2 3, al ~2 

respectively. Hence, it suffices to show that the derivation D~, and D~m are 

not inner. Assume, on the contrary, that there exists an element T of Gr Hg,n 

such that  D~ m = ad(T). Then, T = 0 by Lemma (3.11) (1)~ m and Lemma 

(3.13). Hence, D~.  = 0. This contradicts Lemma (3.11) (2)~. and Lemma 

(3.12). Therefore, D~m is not inner. Similarly, D~m is not inner and the proof is 

completed. | 
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(3.15) Proofs of Lemma (3.12) and Lemma (3.13): In the case that n >_ 1, 

GrHg,n is a free Lie algebra generated by XI,...,X2g,Z1,..., Zn-1 over Z (cf. 

(2.1.2)). Hence, these two lemmas are direct consequences of the well known fact 

that 

(*) the centralizer of Xi in Gr IIg,~ coincides with ZXi. 

Thus, to prove these lemmas, we may restrict ourselves to the case of n = 0. 

Since the authors do not know whether (*) holds also in this case, we shall give 

direct proofs of these lemmas. 

Proof of Lemma (3.12) in the case of n = O: Let A denote the free associative 

algebra on X1,..., X2g over Z and r be the ideal of A generated by 

g 

R = ~ _ , ( X i X g + i  - Xg+iX~). 
i=1 

Then, the universal enveloping algebra of Gr IIg,0 is canonically isomorphic to 

the quotient algebra A/~: ([L]). Thus, it suffices to show that 

ad(X1)m(X2) • 

holds in A. Assume that this does not hold. Then we have 

ad(X1)m(X2) = E arRbr, 

where a.  (resp. br) runs over homogeneous polynomials (resp. monomials) of A 

satisfying 

deg(a~) + deg(b,) = m - 1; 

b, ~ b~, if r ~ r'; 

the coefficient of b. = 1. 

Easy free differential calculations (cf. (2.4)) on the left-hand side show that 

0 m 
OX'~ (L.H.S.) = (-1)reX2. 

Similary on the right-hand side, we have 

0 m 
OX'~ (R.H.S.) = -a~oXg+l , 
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where r0 is the index such that  b~ o = X ~  -1. This is a contradiction and the 

proof is completed. | 

Proof of Lemma (3.13) in the case o f n  = O: This proof is a refinement of the 

fact that the Lie algebra Gr II9,0 has trivial center. It can be done along the idea 

of J. Labute (cf. Asada [All.) Let S be a subset of {X1, . . . ,  X29} satisfying 

(1) ~(S A {Xi, Xg+~}) = 1 for 1 < i < 9, 

(2) x ,  ¢ s, 
(3) Xq • S, 

and a be the ideal of GrHg,O generated by S. Then, the quotient algebra 

Gr IIg,O/a is free on (the image of) { X b . . . ,  X2g} ". S. As 

[~P,)(v] = 0 in GrHg,o/a 

(- denotes modulo a), it follows that T = A)fp with A • X. Since IT, Xq] = O, it 

follows that A = 0, i.e. T • a. 

On the other hand, by using the elimination theorem of free Lie algebras 

(cf. [Bo] Chap. 2 §2), we can show that a is a free Lie algebra on an infinite set 

Containing Xq. As [T, Xq] = 0, we have T = pXq with p • Z. Since [T, Xp] = O, 

it follows that # = 0, i.e. T = 0. | 

4. P roof s  of  T h e o r e m s  A a n d  B 

(4.1) Proofo[  Theorem B: This is a direct consequence of Theorem (3.2) and 

Corollary (2.3.7). | 

(4.2). Using the universal characters explained in (2.3), we have 

[gr 11-I(~)] 

[gr 21-I(Tr)] 

[gr 31-I(Tr)] 

[gr I F(Tr)] 

[gr 2 V(Tr)] 

[gr 3 F(r)] 

where [A]Sp is 

duced in [KT] 

= [llsp 

= [12]sp + F(~r)[0]sp, 

= [2, 1]sp + F(~r)[1]Sp, 

= [13]Sp + F(~r)[1]Sp, 

= [221Sp + F(Tr)[12lsp + (F(Tr)2/2 + F(~'2) /2  - F(~'))[0lSp, 

= [3,121Sp + [3]sp + F(~) [2 ,  i]sp + ( F ( ~ ) 2 / 2  - F(~r2)/2)[1]sp,  

the universal Sp-character corresponding to the partition A intro- 

(see [NT2] for an extended table of these calculations). Recall that, 
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when the length of ,~ is < g, [A]Sp is mapped by 7rsp(2g ) to the irreducible character 

of Sp(2g, C) corresponding to the partition A itself. Therefore, it is observed that 

[gr~ F~l,g(rr)] is stable for g > 2 and so are [gr~ Fgl, g(Tr)] and [gr c3 Fg,n(Tr) ] ~ l g  for g >_ 3. 

Estimating the Sn-representations occurring in multiplicities of each irreducible 

Sp-representations, we conclude the following Sp(2g, C) × Sn-isomorphisms: 

gr~ P ~lg ~ [13]Sp(2g) + {(n) + (n -- 1, 1)} ® [1]Sp(2g ) (g > 3), - - g , n  

gr 2 V~lg =~ [22]Sp(2g) + {(n) + (n - 1, 1)} ® [12]Sp(2g) - -g~n 

+ { (n )+  ( n -  1,1) + (n - 2 ,2)}® [0]Sp(2g ) (g ~ 2), 

gr~ P ~lg ~ [3, 12]sp(2g) + [3]Sp(2g) + {(n) + (n - 1, 1)} ® [2, 1]Sp(2g) - - g , n  

+ { ( n - 2 , 1 2  ) + ( n - 1 , 1 ) } Q [ 1 ] s p ( 2 ~ )  (g_>3). 

Here we denote by (p) the irreducible Sn-representation corresponding to p sub- 

ject to Murnaghan's rule for disordered partitions (cf. [Mu], p.461). Since every 

irreducible component has multiplicity one, these Sp(2g, C) × Sn-isomorphisms 

are defined over Q. By virtue of Lemma (2.2.8), it remains for the proof of 

__m ~alg is contained Theorem A to determine which irreducible component of g~ lg,n 

in the image of gr~ Fg,n and which is not for m = 1, 2, 3. 

(4.3) Proof  of Theorem A: We first consider the case n = 0, 1. By a result of 

Palg* (n = 0, 1), and by a result of Morita Johnson ([J]), we h a v e  g r ~ F g , n  g rl --g,n 
, e.. __2 r, alg* ([Moll Proposition 1.2) we see that gr~ Fg,1 = ar tg, t  • Moreover, the forgetful 

homomorphism induces a sequence of Sp(2g, Q)-modules 

(4.3.1) 0 --~ gr~ H9,0 ~ gr~ rg,1 ---* gr~ rg,0 --* 0 

which is exact at least for 1 _< m < 3 (cf. [A2]). Our result for gr~ Fg,~ (n = 0, 1, 

m = 1, 2) immediately follows from these facts together with (2.2.8). For m = 3, 
palg* by Morita's results (2.4.2),(2.4.4), Tr3 : gr 3 %,1 --* SY m3 H ® Q(-= [3]sp(2g)) is 

surjective and gr~ F~, 1 is contained in this kernel. By Theorem B, there is a 

nonzero component of type [3, 12]sp in gr~Fg,n. Thus, gr~Fg,~ (n = 0, 1) have 

expected components. 

Next we consider general cases. If n _> 1 and m = 1, 2, 3, we have the following 

commutative diagrams of exact sequences of Sp(2g, Q) x S~-modules 

0 ~ gr~ Hg,n ~ gr~ Fg,n+l ) gr~ Fg,~ ) 0 

Falg ~_rn r a l g  0 ) grr~IIg ,n  ~ g r m ~ g , n + l  ) ~1 Jtg,n I 0 
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(cf. [A2]). From this it follows inductively that any gap between gr~ Fg,, and 

palg must come from what appears in the case of n = 1. Thus the argument g rm -g,n 

is reduced to the above case, and the proof of Theorem A is completed. | 

Remark (4.4): We complement remarks on Theorems A, B for the case g = 2. 

In Theorem A, we have only to drop the components [13], [3, 12] from the right 

hand sides of (1),(3) respectively. In Theorem B, the statement (2) holds true 

provided that n >_ 1, for the construction of ¢), ~ in §3 together with Corollary 

(2.3.7) for even m are also valid in the case g = 2, n > 1. | 

Remark (4.5): The authors do not know whether the sequence (4.3.1) is exact 

for m > 4. We remark that this is closely related to how large the image of 

the homomorphism em is. (See (2.2.7).) Here we only mention that /f (4.3.1) is 

pMg (Note exact for m = 4, then the image of gr~ Fg,1 by t 4 ~ Q cannot fill gr 4 -g,1. 

that Theorem (2.4.4) gives no restriction on that image.) In fact, if the image of 

palg by the exactness of (4.3.1) for m = 4, we have ~4 ® Q coincides with gr 4 -9,1, 

palg ralg -- dim gr 4 ra lg  dim gr~ H9,0 = dim gr 4 -g,1 - dim gr~ Fg,o ~ dim gr 4 ~9,1 -g,O. 

By easy calculations using a formula of Labute (2.1.3), we see that the right hand 

side is equal to dim gr~ H9,0 + 2g 2 + g (cf. also [NT2]). This is a contradiction. 

| 
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